棋牌游戏下载-凯特棋牌手机版_高级百家乐桌布_百导全讯网新2 (中国)·官方网站

學術交流
位置: 首頁 > 學術交流 > 正文

景乃桓: Lattice Structure of Vertex Algebras

時間:2022-03-29來源:數學學院

報告時間:2022年3月30日(星期三)9:30-10:30

報告平臺:騰訊會議 ID:353 549 241

:景乃桓 教授

工作單位:北卡州立大學

舉辦單位:數學學院

報告簡介

The integral lattice of VOA was constructed by Dong and Griess for finite automorphism group of the VOA. We will show that the general divided powers of vertex operators preserve the integral form spanned by Schur functions indexed by partition-valued functions, which generate an analog of the Kostant-Lusztig Z-form for the lattice VOA. In particular, we show that the Garland operators, counterparts of divided powers of Heisenberg elements in affine Lie algebras, also preserve the integral form. We also study the irreducible modules for the modular lattice vertex algebra.

報告人簡介

景乃桓,美國北卡州立大學終身教授,博士生導師。國家杰出青年基金(B類)獲得者,德國洪堡學者,美國富爾布萊特學者。主要從事無限維李代數、量子群、表示論、代數組合和量子計算方面的研究工作。特別地,與耶魯大學Frenkel教授合作,首次構造仿射量子代數的頂點表示,是該領域的開創性工作,發表在數學頂尖刊物Invent Math.上;研究對稱多項式函數時引入的“景氏算子”,被著名數學家MacDonald評論為對稱函數的新研究方法。在國際著名期刊上發表論文160多篇,編輯著作5部,主持多項國家自然科學基金,其中重點項目一項。

關閉

聯系我們:安徽省合肥市屯溪路193號(230009)  郵編:230009

Copyright ? 2019 合肥工業大學    皖公網安備 34011102000080號 皖ICP備05018251號-1  

本網站推薦1920*1080分辨率瀏覽

金赞百家乐的玩法技巧和规则| 大赢家娱乐城| 德州扑克英语| 百家乐官网娱乐城赌场| 博彩百家乐官网软件| 专业百家乐筹码| 百家乐官网对子赔率| 时时博百家乐娱乐城| 百家乐官网小游戏开发| 百家乐必赢| 乐天堂百家乐官网娱乐网| 明珠国际娱乐| 卢克索百家乐的玩法技巧和规则| 百家乐赌博牌路分析| 澳门百家乐官网走势图怎么看| 优博平台代理开户| 亿博娱乐| 句容市| 娱乐城注册送体验金| 百家乐生活馆拖鞋| 闲和庄百家乐官网娱乐城| 百家乐官网小音箱| 柯坪县| 大发888亚洲游戏平台| 百家乐怎么计算概率| 七胜百家乐官网赌场娱乐网规则 | 百家乐百战百胜| 百家乐官网赢钱的技巧是什么| 百家乐官网试玩活动| 皇冠网小说推荐| 申扎县| 永宁县| 博狗百家乐官网开户| 宝龙百家乐官网娱乐城| 百家乐官网赌博信息| 真人百家乐官网现金游戏| 明升百家乐官网娱乐城| 杨公先师24山秘密全书| 做生意店铺风水| 百家乐技巧发布| 百家乐手机游戏下载|