棋牌游戏下载-凯特棋牌手机版_高级百家乐桌布_百导全讯网新2 (中国)·官方网站

學術交流
位置: 首頁 > 學術交流 > 正文

代數編碼報告三則

時間:2025-03-03來源:數學學院

告時間:2025年3月4日(星期二)8:30-11:30

報告地點:翡翠湖校區科教樓B座1710室

舉辦單位:數學學院


學術報告信息(一)

報告題目Large sets of sequences with optimal correlation and low PAPR

告時間:2025年3月4日(星期二)8:30-9:30

報 告 人周正春 教授

工作單位:西南交通大學

報告簡介

Large sets of sequences with optimal correlation and low PAPR are desirable in modern wireless communication including 6G and Wifi 8. In this talk, we shall introduce the metrics (including correlation and PAPR) of sequences for measuring their performance in practical applications. We then recall the well-known bounds on these metrics, and some classical sequences meeting the bounds. We shall also introduce a new family of sequences with large size, optimal correlation and low PAPR. The numerical results show that the proposed sequences outperform the known sequences used in the standard of 5G.

報告人簡介

周正春,西南交通大學教授、博士生導師、四川省自然科學基金創新群體負責人、國家級青年人才。一直致力于面向現代通信、雷達、信息安全和數據降維的編碼理論和智能電子對抗技術研究,在應用數學和信息論領域權威期刊發表論文80余篇(包括領域權威期刊IEEE TIT 35篇),成果共被引用4000余次;先后完成60余多項國家級、省部級、國防和企業委托項目;曾獲全國百篇優博論文獎、教育部自然科學二等獎(2次)、湖北省自然科學一等獎、華為WiFi標準卓越貢獻獎、詹天佑青年科技獎、茅以升鐵道科技獎。帶領團隊,綜合運用代數、組合、優化與人工智能算法,設計的7類序列編碼入選WiFi、UWB和光通信國際標準、設計的兩類波形服務于國家某重大演習。擔任IEEE Transactions on Cognitive Communications and Networking、Cryptography and Communications、Advances in Mathematics of Communications三個國際SCI期刊編委。


學術報告信息(二)

報告題目Quadratic forms and their applications in coding theory

告時間:2025年3月4日(星期二)9:30-10:30

報 告 人:唐春明 研究員

工作單位:西南交通大學 

報告簡介

Quadratic forms play a pivotal role in various branches of mathematics, including number theory and algebra, and have profound applications in coding theory. In this talk, we explore the theory of quadratic forms over finite fields and their significant impact on the construction and analysis of codes. Specifically, we examine the use of quadratic forms in generating self-orthogonal codes, which are essential in the development of quantum codes, lattice theory, and linear complementary dual (LCD) codes. By leveraging quadratic forms over finite fields, we construct new families of ternary self-orthogonal codes with flexible parameters. We rigorously analyze the parameters of these codes, demonstrating their minimal nature and their few nonzero weight characteristics, with at most five nonzero weights. The methods and results discussed in this talk offer a novel approach to constructing self-orthogonal codes with applications extending to quantum information processing and error-correction schemes.

報告人簡介

唐春明,西南交通大學信息科學與技術學院,研究員。2012年7月獲得北京大學博士學位,先后在巴黎第八大學與香港科技大學從事博士后研究工作,主要研究方向為面向網絡空間安全的編碼密碼理論。以獨立/第一/通訊作者身份在領域權威期刊發表論文70余篇,包括編碼密碼理論旗艦期刊IEEE Transactions on Information Theory 20余篇。因在密碼函數領域的貢獻,榮獲密碼學國際學術獎:布爾獎(George Boole Prize);研究成果獲得教育部自然科學二等獎(排名2/4);主持國家自然科學基金重點項目和面上項目


學術報告信息(三)

報告題目A general construction of regular complete permutation polynomials

告時間:2025年3月4日(星期二)10:30-11:30

報 告 人:吳霞 教授

工作單位:東南大學

報告簡介

Let r ≥ 3 be a positive integer and Fq the ?nite ?eld with q elements. In this paper, we consider the r-regular complete permutation property of maps with the form f = τ ? σM ? τ ?1 where τ is a PP over an extension ?eld Fqd and σM is an invertible linear map over Fqd. When τ is additive, we give a general construction of r-regular CPPs for any positive integer r. When τ is not additive, we give many examples of regular CPPs over the extension ?elds for r = 3, 4, 5, 6, 7 and for arbitrary odd positive integer r. These examples are the generalization of the ?rst class of r-regular CPPs constructed by Xu et al. (Des Codes Cryptogr 90:545–575, 2022).

報告人簡介

吳霞,東南大學數學學院教授,博士畢業于南京大學數學系。主要研究方向是代數數論和代數編碼。在《IEEE Transactions On Information Theory》、《The Ramanujan Journal》、《Acta Arithmetica》、《Designs, Codes and Cryptography》、《Finite Fields and their Applications》等高水平期刊發表多篇SCI論文,主持國家自然科學基金青年基金1項,面上項目2項

關閉

聯系我們:安徽省合肥市屯溪路193號(230009)  郵編:230009

Copyright ? 2019 合肥工業大學    皖公網安備 34011102000080號 皖ICP備05018251號-1  

本網站推薦1920*1080分辨率瀏覽

百家乐官网光纤冼牌机| 澳门百家乐官网必赢看| 金濠国际| 吉水县| 新浪棋牌竞技风暴| 百家乐威尼斯人| 威尼斯人娱乐老牌网站| 大东方娱乐城| 百家乐官网最佳打| 百家乐长龙如何判断| 大发888怎么开户| e世博百家乐官网技巧| 百家乐官网最佳注码法| 百家乐详情| 北川| 香港百家乐官网赌场娱乐网规则 | 金花百家乐的玩法技巧和规则| 栖霞市| 24山择日财丁贵日| 百家乐视频二人麻将| 威尼斯人娱乐城澳门赌博| 云鼎百家乐官网现金网| 网络百家乐赌博赢钱| 百家乐官网是不是有技巧| 百家乐娱乐城提款| 万荣县| 百家乐官网套路| 麻将二八杠技巧| 蓬溪县| 星河百家乐的玩法技巧和规则| 百家乐官网分路单| 516棋牌游戏补丁| 中原百家乐官网的玩法技巧和规则 | 百家乐代理网址| TT国际娱乐城| 百家乐押注最多是多少| 百家乐官网长庄投注| 大发888注册就送58| 百家乐官网998| 盈禾娱乐| 加州百家乐的玩法技巧和规则 |