報告時間:2024年9月26日(星期四)10:00
報告地點:翡翠湖校區(qū)科教樓B座1710室
報 告 人:張智民 教授
工作單位:韋恩州立大學
舉辦單位:數(shù)學學院
報告簡介:
In certain applications, 2nd-order elliptic problems lack divergent forms due to regularity restrictions, necessitating the direct discretization of the 2nd-order derivatives. In this work, we develop a new Petrov-Galerkin method that employs a C1-conforming finite element for the trial space and an L2- discontinuous element for the test space. We demonstrate that the numerical solution obtained through this new method converges to the exact solution with an order of 2k-2(where k > 2 is the polynomial degree) at the nodal points for both function value and the gradient, assuming a rectangular mesh.
報告人簡介:
張智民,中國科學技術(shù)大學學士(1982)碩士(1985)、馬里蘭大學(University of Maryland,College Park)博士(1991)、韋恩州立大學(Wayne State University)教授(2002-)、 國家引進海外高層次人才(2012)?,F(xiàn)任和曾任10個國內(nèi)外數(shù)學雜志編委,包括Mathematics of Computation(2009-2017)、Journal of Scientific Computing(2011-2017)、Numerical methods for Partial Differential Equations(2013-)、 Communications on Applied Mathematics and Computation (2019-)、CSIAM Transaction on Applied Mathematics(2019-)、《數(shù)學文化》(2010-)等,發(fā)表SCI論文200余篇。張智民教授長期從事計算方法,所提出的多項式保持重構(gòu)(Polynomial Preserving Recovery —PPR)方法2008年被大型商業(yè)軟件COMSOL Multiphysics 采用并沿用至今。