棋牌游戏下载-凯特棋牌手机版_高级百家乐桌布_百导全讯网新2 (中国)·官方网站

學術交流
位置: 首頁 > 學術交流 > 正文

非線性泛函分析及其應用青年學者論壇

時間:2024-04-25來源:數學學院

報告時間:2024年4月26日(星期五)8:40-16:40

報告地點:翡翠湖校區科教樓B1710室

舉辦單位:數學學院

學術報告信息(一)

報告題目: Single-peak and multi-peak solutions for Hamiltonian elliptic systems in dimension two

報告時間:2024年4月26日(星期五)8:40-9:40

:張建軍 教授

工作單位:重慶交通大學

報告簡介

In this talk, we are concerned with the Hamiltonian elliptic system in dimension two involving exponential nonlinearities. When the potential admits one or several local strict minimum points, we show the existence and concentration of single-peak and multi-peak semiclassical states. In addition, positivity of solutions and uniqueness of local maximum points of solutions are also studied. Our theorems extend the results of Ramos and Tavares [Calc. Var. 31 (2008) 1-25], where the nonlinearities have polynomial growth. It seems that it is the first attempt to obtain multi-peak semiclassical states for Hamiltonian elliptic system with exponential growth.

報告人簡介

張建軍,重慶交通大學數學與統計學院教授,重慶數學學會副理事長,重慶市高校中青年骨干教師。博士畢業于清華大學,先后在南開大學陳省身數學研究所、巴西帕拉伊巴聯邦大學、意大利因蘇布里亞大學從事博士后研究。研究領域主要包括非線性分析中的變分與拓撲方法,非線性橢圓方程等。主持國家自然科學基金面上項目2項、國際合作與交流項目1項以及意大利倫巴第研究員基金(GLOCAL ERC)等。在非線性薛定諤方程的半經典狀態和規范化解的研究等方面取得了一些結果,在《J.Math.Pures Appl.》《Comm. PDE》,《J. Diff. Eqs》,《J. London Math. Soc.》,《Nonlinearity》等國際主流學術刊物上。

學術報告信息(二)

報告題目: Convergence problem of the generalized Kadomtsev-Petviashvili II equation in anisotropic Sobolev space

報告時間:2024年4月26日(星期五)9:40-10:40

:楊美華 教授

工作單位:華中科技大學

報告簡介

This talk is about the generalized Kadomtsev-Petviashvili II (gKP-II) equation with data in the anisotropic Sobolev space u_{t}-|D_{x}|^{\alpha}u_{x}+\partial_{x}^{-1}\partial_{y}^{2}u+\frac{1}{2} \partial_{x}(u^{2})=0, u(x,y,0)=f(x,y) , with f(x) is a given function which belongs to H^{s_{1},s_{2}}(\mathbf{R}^{2}). We investigate the pointwise convergence problem and uniform convergence  in the anisotropic Sobolev space H^{s_{1},s_{2}}(\mathbf{R}^{2}).

報告人簡介

楊美華,華中科技大學數學與統計學院教授,博士生導師。2006年畢業于蘭州大學基礎數學系,獲得理學博士學位。畢業后到南京大學數學系從事博士后研究,在2008年博士后出站后進入華中科技大學數學與統計學院工作。2011年被華中科技大學聘為教授。主要從事無窮維耗散動力系統的長時間動力學行為的研究、在深入研究無窮維動力系統全局吸引子存在性的基礎上,重點研究它們的結構以及復雜性。在本專業重要國際期刊《Transactions of the American Mathematical Society》、《Indiana Univ. Math. Journal,》 《Journal of Differential Equations》,《Nonlinearity》等雜志上發表論文多篇。2011年獲華中科技大學“學術新人獎”,2012年入選2012年度教育部“新世紀優秀人才支持計劃”,主持國家自然科學基金面上項目3項。

學術報告信息(三)

報告題目: Infinitely many Sign-changing normalized solutions of competition-diffusion p-Laplacian systems

報告時間:2024年4月26日(星期五)11:00-12:00

:鐘學秀 副研究員

工作單位:華南師范大學

報告簡介

In this talk, we are concerned with system of m p-Laplacian Schr\"odinger equations with competition interactions in a bounded regular domain. When the nonlinearities are odd satisfying some suitable assumptions, we can apply the vector genus and descending flow method to establish infinitely many sign-changing normalized solutions. The innovation is that we construct a tangent pseudo-gradient vector field for the energy functional on the constrained manifold, which can be used to find invariant sets of descending flow. The difficulty is reinforced by the p-Laplacian operator and also by the normalized constraint. Since we are dealing with $p>1$ in a unified way, the energy functional may be not regular enough and the p-Laplacian operator is not linear, we cannot benefit from certain classical techniques directly. This is a joint work with Prof. Jianjun Zhang and my students Anjie Feng and Jinfang Zhou.

報告人簡介

鐘學秀,華南師范大學副研究員,華南數學應用與交叉研究中心青年拔尖引進人才,最新ESI高被引學者。研究方向為運用非線性分析、變分法等方法來研究幾何分析學、數學物理中橢圓型偏微分方程和方程組以及某些不等式問題。主持國家青年基金和面上基金各一項。已在J.Differential Geom., J. Math. Pures Appl., Math. Ann., Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),Calc. Var. PDE,J. Differential Equations等國際重要刊物上發表多篇學術論文。在非線性泛函分析和橢圓偏微分方程領域的Li-Lin 公開問題,Sirakov 公開問題,Bartsch-Jeanjean-Soave公開問題等方面獲得了重要進展。

學術報告信息(四)

報告題目: Homogenization of Parabolic Systems with Several Spatial and Temporal Scales

報告時間:2024年4月26日(星期五)14:30-15:30

:鈕維生 教授

工作單位:安徽大學

報告簡介

We report some results on quantitative estimates in the homogenization of second-order parabolic systems with periodic coefficients that oscillate on multiple spatial and temporal scales. The results include the convergence rate and some uniform regularity estimates we obtained recently.

報告人簡介

鈕維生,安徽大學教授,博士生導師,近年來主要從事偏微分方程與無窮維動力系統均勻化理論的研究,在Math Annalen,Journal of Functional Analysis, Communications in Partial Differential equations, Journal of Differential Equations等期刊上發表多篇論文,先后主持國家自然科學基金面上2項、青年項目,以及安徽省優秀青年基金等多項省部級項目。

學術報告信息(五)

報告題目: Physical states and qualitative analysis of spin-1 BEC in Ioffe-Pritchard magnetic field

報告時間:2024年4月26日(星期五)15:40-16:40

:李孟輝 博士

工作單位:河南師范大學

報告簡介

In this talk, I will report some our recent work about Spin-BEC. We study the physical states along with qualitative properties of spin-1 Bose-Einstein condensate in Ioffe-Pritchard magnetic field, two conserved quantities, the number of atoms and the total magnetization are involved in. The presence of the Ioffe-Pritchard magnetic field, which competes dramatically with the harmonic trapping, forces the implementation of new ideas to catch the physical states and analyze their qualitative properties. Based on the ferromagnetic or antiferromagnetic characterization of spin-1 Bose-Einstein condensate, our results support some experimental observations and some numerical analysis on ground states. This is a joint work with Xiao Luo, Juncheng Wei and Maoding Zhen.

報告人簡介

李孟輝,博士,河南師范大學講師。2022年畢業于華中科技大學,獲得理學博士學位。主要從事非線性泛函分析和薛定諤方程規范化解的研究。在本專業重要國際期刊《SIAM Journal on Mathematical Analysis 等雜志發表多篇學術論文。

關閉

聯系我們:安徽省合肥市屯溪路193號(230009)  郵編:230009

Copyright ? 2019 合肥工業大學    皖公網安備 34011102000080號 皖ICP備05018251號-1  

本網站推薦1920*1080分辨率瀏覽

沂南县| 大发888怎么玩| 澳门百家乐指数| 大发888官方df888gfxzylc8| 互联网百家乐官网的玩法技巧和规则 | 免佣百家乐官网赌场优势| 新加坡百家乐赌法| 皇冠足球比分| 开心8百家乐游戏| 百家乐官网下注技术| 百家乐不倒翁缺点| 孟州市| 太阳城网上| 百家乐官网翻天超清| 鸿运国际娱乐| 百家乐牌路图表下| 百家乐官网如何看| 最新皇冠网址| 恒利百家乐的玩法技巧和规则 | 澳门百家乐网站bt| 大发888娱乐游戏下载 官方网| 金锁玉关24山砂水断| 灵丘县| 长江百家乐的玩法技巧和规则| 百家乐官网最长的闲| 真人百家乐蓝盾| 百家乐官网的出千手法| 吴忠市| 大发888棋牌乐城下载| 百家乐娱乐城彩金| 百家乐官网桌出租| 大发888赢钱| 百家乐赌场博彩赌场网| 乐天堂百家乐官网娱乐城| 海立方百家乐官网赢钱| 全讯网a3322| 百家乐稳赢投注| 网页百家乐官网游戏下载| 澳门百家乐官网21点| 赌博游戏机| 威尼斯人娱乐城注册网址|