棋牌游戏下载-凯特棋牌手机版_高级百家乐桌布_百导全讯网新2 (中国)·官方网站

學(xué)術(shù)交流
位置: 首頁(yè) > 學(xué)術(shù)交流 > 正文

Qiaode Jeffrey Ge: On the mean and variance of rigid-body displacements

時(shí)間:2022-06-14來(lái)源:機(jī)械工程學(xué)院

報(bào)告時(shí)間:2022年6月16日(星期四)21:00-22:30

報(bào)告平臺(tái)騰訊會(huì)議  ID:723 990 484

報(bào) :Qiaode Jeffrey Ge 教授

工作單位:美國(guó)紐約州立大學(xué)

舉辦單位:機(jī)械工程學(xué)院

報(bào)告簡(jiǎn)介

Many applications in biomechanics and medical imaging call for the analysis of the kinematic errors in a group of  patients statistically using the average displacement and the standard deviations from the average.This talk studies the problem of computing the average displacement from a set of given spatial displacements using three types of parametric representations: Euler angles and translation vectors, unit quaternions and translation vectors, and dual quaternions.

It has been shown that the use of Euclidean norm in the space of unit quaternions reduces the problem to  that of computing the average for each quaternion component separately and independently. While the resulting algorithm is simple, the change of the sign of a unit quaternion could lead to an incorrect result. A novel kinematic measure based on dual quaternions is introduced to capture the separation between two spatial displacement. This kinematic measure is then used to formulate a constrained least squares minimization problem.  It has been shown that the problem decomposes into that of finding the optimal translation vector and the optimal  unit quaternion. The former is simply the centroid of the set of given translation vectors and the latter  can be obtained as  the eigenvector corresponding to the least eigenvalue of a $4\times 4$ positive definite symmetric matrix. It is found that the weight factor used in combining rotations and translations in the formulation does not play a role in the final outcome.Examples are provided to show the comparisons of these methods.

報(bào)告人簡(jiǎn)介

Qiaode Jeffrey Ge教授美國(guó)紐約州立大學(xué)石溪分校機(jī)械工程系主任,是ASME(美國(guó)機(jī)械工程師協(xié)會(huì))Fellow。主要研究方向包括計(jì)算設(shè)計(jì)方法, 機(jī)構(gòu)學(xué)/機(jī)器人學(xué), CAD/CAM, 計(jì)算機(jī)圖形學(xué)與VR技術(shù)的工程應(yīng)用。一直在ASME設(shè)計(jì)工程部門(mén)執(zhí)行委員會(huì)(DED)任職,并多次擔(dān)任ASME機(jī)構(gòu)學(xué)和機(jī)器人學(xué)委員會(huì)和ASME多個(gè)學(xué)術(shù)會(huì)議的主席和重要獎(jiǎng)項(xiàng)的評(píng)委會(huì)成員。他也多次擔(dān)任IFToMM世界大會(huì)(機(jī)械設(shè)計(jì)領(lǐng)域最頂級(jí)國(guó)際會(huì)議)的組織委員會(huì)的成員、首席美國(guó)代表和IFToMM美國(guó)成員組織主席。

Qiaode Jeffrey Ge教授目前是ASME的機(jī)械設(shè)計(jì)雜志(Journal of Mechanical Design)的機(jī)構(gòu)學(xué)方向主編,并曾擔(dān)任 ASME Journal of Mechanisms and Robotics、International Journal of Mechanics Based Design of Structures and Machines等機(jī)構(gòu)學(xué)與機(jī)器人方向國(guó)際著名期刊的副主編。自2002年起,他成為中國(guó)機(jī)械工程學(xué)會(huì)的機(jī)構(gòu)學(xué)委員會(huì)理事。他也是美國(guó)國(guó)家科學(xué)基金會(huì)的評(píng)審小組成員以及美國(guó)國(guó)家科研委員會(huì)、香港政府科研資助委員會(huì)、新加坡政府科研資助委員會(huì)和奧地利科學(xué)基金的評(píng)審人。

關(guān)閉

聯(lián)系我們:安徽省合肥市屯溪路193號(hào)(230009)  郵編:230009

Copyright ? 2019 合肥工業(yè)大學(xué)    皖公網(wǎng)安備 34011102000080號(hào) 皖I(lǐng)CP備05018251號(hào)-1  

本網(wǎng)站推薦1920*1080分辨率瀏覽

大名县| 百家乐官网必胜方程式| 百家乐官网博娱乐网赌百家乐官网的玩法技巧和规则 | 百家乐算牌e世博| 百家乐官网赌博策略| 南漳县| 试用的百家乐官网软件| 网络百家乐电脑| 郁南县| 百家乐事电影| 利德赌博| 百家乐官网百胜注码法| 马德里百家乐官网的玩法技巧和规则 | 大发888合营商| 任我赢百家乐官网自动投注分析系统 | 大世界百家乐官网娱乐| 百家乐套利| 百家乐官网娱乐城游戏| 君豪棋牌怎么样| 最新百家乐官网双面数字筹码| 百家乐技术秘籍| 全讯网qtqnet| 百人百家乐官网软件供应| 澳门百家乐指数| 博彩开户| 大发888bet亚洲lm0| 澳门百家乐官网玩| 大发888 dafa888游戏| 百家乐官网网站排名| 威尼斯人娱乐城真钱游戏| 玩百家乐官网有何技巧| 百家乐缩水| 百家乐官网智能分析软| KK百家乐的玩法技巧和规则| 博久百家乐官网论坛| 威尼斯人娱乐网注册送38元彩金 | VIP百家乐-挤牌卡安桌板| 百家乐官网靠什么赢| 罗盘24山八卦| 百家乐单跳| 百家乐官网凯时赌场娱乐网规则|